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Abstract

Background: The computer-aided identification of specific gait patterns is an
important issue in the assessment of Parkinson’s disease (PD). In this study, a
computer vision-based gait analysis approach is developed to assist the clinical
assessments of PD with kernel-based principal component analysis (KPCA).

Method: Twelve PD patients and twelve healthy adults with no neurological history
or motor disorders within the past six months were recruited and separated
according to their “Non-PD”, “Drug-On”, and “Drug-Off” states. The participants were
asked to wear light-colored clothing and perform three walking trials through a
corridor decorated with a navy curtain at their natural pace. The participants’ gait
performance during the steady-state walking period was captured by a digital
camera for gait analysis. The collected walking image frames were then transformed
into binary silhouettes for noise reduction and compression. Using the developed
KPCA-based method, the features within the binary silhouettes can be extracted to
quantitatively determine the gait cycle time, stride length, walking velocity, and
cadence.

Results and Discussion: The KPCA-based method uses a feature-extraction approach,
which was verified to be more effective than traditional image area and principal
component analysis (PCA) approaches in classifying “Non-PD” controls and “Drug-Off/
On” PD patients. Encouragingly, this method has a high accuracy rate, 80.51%, for
recognizing different gaits. Quantitative gait parameters are obtained, and the power
spectrums of the patients’ gaits are analyzed. We show that that the slow and irregular
actions of PD patients during walking tend to transfer some of the power from the main
lobe frequency to a lower frequency band. Our results indicate the feasibility of using
gait performance to evaluate the motor function of patients with PD.

Conclusion: This KPCA-based method requires only a digital camera and a
decorated corridor setup. The ease of use and installation of the current method
provides clinicians and researchers a low cost solution to monitor the progression of
and the treatment to PD. In summary, the proposed method provides an alternative
to perform gait analysis for patients with PD.
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Background
Parkinson’s disease (PD) is a chronic degenerative disease [1]. Due to the absence of

dopamine in the basal ganglia circuit in the brain, people with PD commonly present

gait disorders that affect their walking ability and reduce the energy efficiency of their

gait [2,3]. As gait disorders are symptoms of the early stage of PD, gait performance

has become a specific and major hallmark in the assessment and evaluation of the dis-

ease’s progression [4-6]. The Unified Parkinson’s Disease Rating Scale (UPDRS) [7] is

widely used to assess and track the longitudinal course of PD. Among UPDRS, part III

is often used to evaluate the level of motor impairment and response to levodopa

(L-dopa) for PD patients. However, such evaluations rely on the experience and/or the

expertise of the clinician. Observations based on the part III of UPDRS tend to be sub-

jective. In light of the issues mentioned, a quantitative measurement for parkinsonian

gait is much needed.

In the past two decades, video-based motion analysis that requires no physical contact

has become a popular solution for gait analysis [8,9]. Instead of traditional evaluations

conducted by human inspectors, researchers now use computer-aided video gait analysis

for precise data collection, reliable quantitative measurements, and systematic data man-

agement. As natural body movements can be transformed into essential spatial-temporal

parameters with video-based motion analysis, abnormalities in gait and posture can be

captured and identified with precision [10-14]. Conventional gait analysis is performed

using an experimental setup consisting of force plates, multiple infrared cameras, reflec-

tive balls, light-emitting diodes (LED), or inertial sensors placed onto regions of the sub-

ject’s body [15]. Although these systems provide accurate kinematic measurements,

conventional gait analyses require a relatively large space and expensive equipment.

Furthermore, dedicated manpower is required to calibrate the camera system, apply the

reflective balls, and utilize the software. These properties of conventional gait analysis

limit its application in many clinical settings, such as clinics with space or budgetary

limitations.

However, gait analysis in PD patients is important for both determining the severity of

PD and evaluating the improvements provided by the treatment regime. A method for

performing gait analysis that can be applied in clinics within a limited space to discrimi-

nate between PD patients and healthy controls and to determine the therapeutic effect of

L-dopa on PD patients is required. The silhouette method provides an economical alterna-

tive for recognizing and analyzing PD gait in a clinical setting [16]. The silhouette method

records the silhouettes of the subjects walking and extracts the biometric features that are

highly correlated with gait patterns using a single camera. Thus, the computational and

storage requirements are largely reduced [17]. As lower-cost alternative methods that

require less space and less dedicated manpower than the model-based method, the exist-

ing approaches that use walking silhouettes [18-21] perform well in recognizing different

gaits but do not provide the quantitative measurements of the gait parameters used for

monitoring abnormalities in or progression of parkinsonian gait.

In order to develop a simple and efficient method for the quantification and recogni-

tion of parkinsonian gait, a video-based silhouette approach using kernel-based principal

component analysis (KPCA) [22] is developed in this study. Participant’s gait perfor-

mance during the steady-state walking period is captured and then analyzed to verify the

proposed method. The aim of the approach is to provide clinicians and researchers with

Chen et al. BioMedical Engineering OnLine 2011, 10:99
http://www.biomedical-engineering-online.com/content/10/1/99

Page 2 of 21



an easy-to-use and -install tool to recognize and quantify the gait performance of

non-PD controls and PD patients in both “Drug-Off” and “Drug-On” states. Temporal

and spectral analyses of gait patterns are applied to investigate the subjects’ walking

patterns.

Methods
The participants

Twelve PD patients who scored an average rating of 2.33 on the Hoehn and Yahr

(H&Y) scale (six scored 2.5, five scored 2, and one scored 3) and twelve healthy adults

with no neurological history that might cause motor disorders within the past six

months were recruited from Hualien Buddhist Tzu Chi General Hospital, Taiwan. The

subjects volunteered to participate, and informed consent was obtained from all sub-

jects in accordance with Buddhist Tzu Chi General Hospital’s Institutional Review

Board (IRB 097-08) Committee on research involving human subjects. The biometric

characteristics of the participants are listed in Table 1. The healthy adults were

denoted as non-PD controls; the PD patients given L-dopa at an equivalent daily dose

for one hour were classified as “Drug-On”, whereas those that abstained from L-dopa

treatment for at least 12 hours were classified as “Drug-Off”. For the PD patients, the

degree of motor function impairment was evaluated using part III of the UPDRS.

Environmental setup and videotaping standard

A 6-m corridor decorated with a navy curtain was prepared for the walking trials. A

commercial digital charge-coupled device (CCD) video camera (PV-GS400, Panasonic,

Japan) was mounted on a tripod and placed 4.1 m in front of the curtain, perpendicu-

lar to the walking pathway, to capture the lateral view of each participant’s walk.

All participants were asked to wear clothing of a much lighter color than the curtain

to facilitate the filtration of noise during image post-processing. To reduce the variabil-

ity of the gait performance, the participants were asked to perform three walking trials.

All participants were asked to walk at their natural pace in order to naturally reflect

their gait performance. Between trials, the participants were instructed to rest for at

least five minutes until their strength was recovered.

The PD patients were asked to abstain from L-dopa overnight for at least 12 hours

prior to the gait measurements. They then performed three drug-off trials in the morn-

ing. Immediately following the completion of the drug-off trials, they were given L-

dopa at an equivalent daily dose. Three drug-on trials were then assessed one hour

after the administration of L-dopa.

Table 1 The basic biometric characteristics of categorized subjects

PD patients (9 M/3 F) non-PD Controls (3 M/9 F)

Min Max Mean ± SD Min Max Mean ± SD

Age (years) 49.00 74.00 60.30 ± 6.71 48.00 67.00 56.40 ± 7.04

Height (m) 1.50 1.82 1.52 ± 0.46 1.49 1.80 1.60 ± 0.08

Weight (kg) 36.00 106.00 63.05 ± 24.37 50.00 67.00 58.08 ± 5.05

Body mass index (kg/m2) 13.38 36.25 24.90 ± 5.74 21.36 24.37 22.76 ± 1.15

Disease duration (years) 1.00 18.00 8.00 ± 4.82 N/A N/A N/A

Hoehn and Yahr stage 2 2.5 2.33 ± 0.33 N/A N/A N/A

SD = standard deviation
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In this study, we utilized the participant’s gait performance during the steady-state

walking period to assist in the verification of the proposed method. Therefore, the par-

ticipants were asked to begin walking 2 m from the left end of the corridor. Moreover,

the last 1 m of each walking period was not videotaped so that patient deceleration did

not affect the data.

The experimental setup and flowchart of the data analyses are illustrated in Figure 1

and 2, respectively. All trials were videotaped using a sampling rate of 15 image frames

per second and an image size of 320 × 240 pixels. The spatial resolution was approxi-

mately 1.06 pixel/cm. The video files were segmented and separated into sequential

images. Using the method and equations presented in binary silhouettes collection, the

background of the sequential images can be removed, and the processed sequential

images can be transformed into binary images that represent the walking silhouettes to

facilitate image noise reduction. Each sequential binary image is then transformed into

an encoded one-dimensional matrix containing the biometric features of the gait.

KPCA is then applied to detect the biometric features. Using KPCA, the walking sil-

houettes can be decomposed, and the biometric features of the people walking can be

extracted for gait analysis. The efficiency of the KPCA-based feature approach was

Figure 1 A general schematic of the experimental setup used for video recording. The participant
wears a light suit to enhance the contrast between the individual and the dark background. The
participant walks along the course (approximately 6 m) in front of the video camera (located
approximately 4.1 m away). To ensure that the captured data reflect the gait performance during the
steady-state walking period, the camera videotapes only the middle 3 m of each walking trial.
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compared with other competing methods, the area [23] feature approach and the prin-

cipal component analyses (PCA) [20,24]-based feature approach. To this end, the mini-

mum distance classifier (MDC) [25,26], a numerical approach, was used to classify the

different gaits and determine the classification accuracy. The discrete Fourier transform

(DFT), which is used to transform a signal in the time domain into a representation in

the frequency domain, was applied to transform the coefficients of the KPCA compo-

nents to understand the spectral power distribution of the different gaits. The KPCA,

MDC, and DFT algorithms and the data analysis were implemented using MATLAB

(MathWorks, Natick, MA) on a windows XP personal computer equipped with an

Intel core 2 duo 6600 processor and 3 GB RAM. The details of implementing the

KPCA, MDC, and DFT algorithms for parkinsonian gait analysis are described in

KPCA-based feature extraction and heel strike determination, minimum distance clas-

sifier (MDC) for classification, and spectral analyses for temporal gait feature signals,

respectively. In our preliminary experiments, the KPCA-based feature approach was

tested on six healthy adults and compared to the GAITRite® system (CIR Systems Inc.,

Clifton, NJ, U.S.A) for validation. The preliminary results showed that there was no

Figure 2 A flow-chart of gait analysis and recognition.
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difference in assessing the kinematic gait parameters of interest, indicating that the

KPCA-based feature approach was an easy-to-use and inexpensive tool for measuring

the selected kinematic gait parameters. We were convinced of the validity of the

KPCA-based feature approach in assessing the gait performance of adults and contin-

ued to use it to assess the kinematic gait parameters of the participants in the present

study. Detailed descriptions for the setup of the preliminary experiment and the trans-

lation of the results are presented in Appendix 1.

Background Construction

Because we were interested in the silhouette data of a participant walking, the invariant

background scene was unnecessary for further gait analyses and should be discarded.

The intensity median value of each pixel, which is at the same location through an

entire gait sequence, was utilized to construct the background image and is repre-

sented as the following:

B
(
i, j

)
= medianTN

(
It(i, j)

)
(1)

where It(i, j) is the brightness at location (i, j) in the specific image that corresponds

to time instant t. TN is the total number of images in the entire sequence, and B(i, j)

is the background pixel value.

Binary silhouette collection

To separate the silhouettes from the image frames of the patient walking, the back-

ground images for each videotaped gait sequence are prepared using equation (1). A

silhouette pixel of the patient walking is acquired by the difference method from [27],

represented as equation (2).

Ft(i, j) = 1−
2×

√(
It(i, j) + 1

) (
B(i, j) + 1

)
(
It(i, j) + 1

)
+

(
B(i, j) + 1

) ×
2×
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256− It(i, j)

) (
256− B(i, j)

)
(
256− It(i, j)

)
+

(
256− B(i, j)

) (2)

THR =
1
M

∑ B(i, j)
256

(3)

{
Ft(i, j) = 1, if Ft(i, j) > THR

Ft(i, j) = 0, if Ft(i, j) < THR
(4)

where It(i, j) is the brightness intensity of a pixel (i, j) in a particular image frame at

an instant t, B(i, j) is the brightness intensity of a prepared background image pixel, M

is the total number of the pixels within the prepared background image (in this case,

M = 320 × 240) and THR is the threshold used to separate a walking silhouette from

the original gait sequential image frame. According to equation (3), the brightness

levels of all of the prepared background image pixels is averaged and normalized to

determine the threshold THR, ranging from [0, 1]. According to equation (4), if Ft(i, j),

the brightness level of a silhouette pixel, >THR, Ft(i, j) = 1; if Ft(i, j) <THR, Ft(i, j) = 0.

After the binarized procedure, 320 × 240 pixel binary silhouette image frames are

acquired. The 320 × 240 pixel binary silhouette image frames are then trimmed to

64 × 64 pixels to preserve the walking silhouette, eliminate redundancies, and reduce
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the computational costs during image analyses. The trimmed binary silhouettes of the

sequential walking image frames from the non-PD control and PD patient in the

“Drug-Off” and “Drug-On” states are illustrated in the top region and middle and

bottom regions in Figure 3, respectively.

KPCA-based feature extraction and heel strike determination

Dimensionality reduction and feature extraction approaches have been widely utilized

in image processing, such as computing the foreground object areas by counting the

number of pixels [23] and PCA [20,24]. In PCA, the representative structure of the

principal components that are related to the input variables is an orthogonal transfor-

mation of the coordinate system. However, many data types implicitly contain non-lin-

ear structures and principal variable components, which are nonlinear and related to

the input variables. KPCA is an extension of PCA that uses kernel methods [28] to

extract the nonlinear components. In recent years, KPCA has been suggested for var-

ious image-processing tasks, such as image noise reduction and compression, as PCA

is used to decompose linear combinations of data sets and does not reflect the genera-

tion process of natural images [29]. The following is a brief introduction to KPCA.

Consider space X with a set of N vectors, x1, x2 . . ., xN, which encompasses a set of

an N-dimensional vector (in this case, N = 64 × 64 = 4096 from each trimmed binary

silhouette). To analyze the nonlinear components of X, the covariance matrix C that

contains the nonlinear principal components can be acquired by mapping X to a fea-

ture space, H. The mapping equation (5) is shown below.

C =
1
N

∑N

j=1
ϕ̃(xj)ϕ̃(xj)T (5)

φ̃ (xi) = φ (xi) −mφ (6)

mφ =
1
N

N∑
i=1

φ (xi) (7)

where j(xi) is a nonlinear polynomial function that maps the vectors to H, xj is the

j-th vector, N is the total number of vectors, T contains the centralized mapped data

of the transposed matrix, mj is the mean, and φ̃(xi) is the centralized mapped data

Figure 3 The trimmed 64 × 64 pixel binary walking sequence silhouettes of non-PD control (top)
and Parkinson’s disease (PD) patients in the “Drug-Off” (middle) and “Drug-On” (bottom) states.
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with mj. To acquire the eigenvector, v, and eigenvalue, l, of the covariance matrix, C,

the following equation must be solved:

λv = Cv (8)

Because ϕ̃ (xi) is a vector with approximately infinite dimensionality, it is difficult to

solve the covariance matrix, C. Therefore, a new N × N centralized kernel matrix, K̃ ,

is defined to acquire the eigenvector and eigenvalue of C.

K̃ = ϕ̃ (xi) · ϕ̃
(
xj

)
= K − lNK − KlN + lNKl (9)

Kij = φ (xi) · φ
(
xj

)
= k

(
xi, xj

)
(10)

k
(
xi, xj

)
=

(
xi · xj

)d, d > 1 (11)

(lN)ij =
1
N

(12)

where i and j are the indices of the row and column, respectively, of vector x, k(xi, xj)

is a polynomial kernel function for acquiring the dot product of the vectors from the

original space and d > 1 because the result of KPCA is identical to that obtained from

PCA, where d = 1. The relationship between the eigenvector, ṽ , of the kernel matrix,

K̃ , and the eigenvector, v, of the covariance matrix, C, can be expressed as

vk =
1√
λ̃k

Qṽk, k = 1, 2, · · · ,m (13)

Q =
[
ϕ̃ (x1) ϕ̃ (x2) · · · ϕ̃ (xN)

]
(14)

where λ̃k is a nonzero set of eigenvalues of ṽ , m is the number of non-zero eigenva-

lues and Q is a centralized mapped data set. After projecting Q to the feature space

constructed by v1, v2,..., vm, the kth KPCA feature vector, yk, can be represented as

yk = vTkQ =
1√
λ̃k

ṽTkQ
TQ =

1√
λ̃k

ṽTk K̃ (15)

where T refers to the transposed matrix.

To summarize, the KPCA computation can be separated into three steps. The first step

is to determine parameter d in (11) for the polynomial kernel function and derive kernel

matrix K̃ according to equation (9). The second step is to derive the kth major eigenvec-

tor, ṽk , of the N × N centralized kernel matrix, K̃ , and acquire the kth coordinate vector,

vk, using equation (13). The third step is to project the centralized mapped data set, Q, to

the feature space using equation (15) and to acquire the kth KPCA feature vector, yk.

In this study, KPCA is used to reduce the dimensionality of image frames with multi-

ple nonlinear components. The KPCA-based feature approach selects the primary

components from a walking image sequence, forming a biometric feature vector to

represent a given participant. The sequential gait image frames and the associated

sequential primary KPCA components (1stKPC) of a non-PD control are shown in

Figure 4(a) and 4(b). After comparing the gait sequences and associated 1stKPC
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waveforms, the 1stKPC value (fifth dot, Figure 4(b), B) reaches a local maximum value

when a participant performs a mid-swing event (frame 5, Figure 4(a)). Moreover, a

heel strike event (frame 1, Figure 4(a)) corresponds to a local minimum 1stKPC value

(first dot, Figure 4(b), A). Similarly, in Figure 4(b), the 1stKPC values are at local maxi-

mums (fifth and thirteenth dot, Figure 4(b), B and D, respectively) and minimums

(first and ninth dot, Figure 4(b), A and C, respectively) at the moment when the non-

PD control participant is performing mid-stances and heel strikes, respectively.

Using the temporal 1stKPC waveforms, the moment of occurrence of the heel strike

can be determined. The distance between two heel strikes can be estimated by the two

locations of the heel in the binary 240 × 320 pixels image frames. As a result, the kine-

matic gait parameters, which depend on the time period and distance between two

heel strikes that are performed with the same foot, gait cycle time, stride length, walk-

ing velocity and cadence can be estimated. The power spectrum of the temporally

associated 1stKPC is plotted in Figure 4(c), and the main lobe frequency reflecting the

step frequency of the non-PD control is located at approximately 1.67 Hz.

Minimum Distance Classifier (MDC) for classification

The MDC [25,26] is a numerical approach used for classify unknown data to classes

which minimize the distance between the data and the class in multi-feature space.

Figure 4 An example of step image frames from a non-PD control subject. (a) Step image frames
from a non-PD control subject. The top panel is the original sequential walking image frames with 240 ×
320 pixels. The bottom panel is the trimmed 64 × 64 pixels binary silhouettes of the top image frames. (b)
The magnitudes of the associated sequential primary KPCA components. For simplicity, the primary KPCA
component is denoted as 1stKPC. The green dots indicate the magnitudes of the sequential 1stKPCs. (c) The
power spectrum of (b) using a 2048-point DFT and rectangular window with a length, L, of 64 points.
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Because the distance is defined as an index of similarity, the minimum distance is

identical to the maximum similarity. In the current study, the efficiency of area, PCA-

based, and KPCA-based feature approaches are compared by evaluating their classifica-

tion accuracy. An area feature vector is obtained by counting the number of pixels of a

particular participant’s walking image sequence. On the other hand, the primary PCA

and KPCA components per frame are used to form the PCA and KPCA feature vectors

for a particular participant, respectively. Gait patterns are classified with a MDC, which

is sufficient for the evaluation of feature efficiencies in this study. MDC is used in this

study to classify a feature vector y to the to ith class I whose mean mi has a minimum

Euclidian distance to y. The minimum distance classifier can be expressed as

I = argmin
i

{
(y −mi)

T(y −mi)
}

(16)

where (y - mi)
T (y - mi) is the Euclidian distance; T is the data of the transposed

matrix.

Spectral analyses for temporal gait feature signals

The DFT is a specific method to transform a function in the time domain into the fre-

quency domain for understanding the spectral power distribution of the function [30].

For the spectral gait analyses, 1stKPC is transformed with DFT. The main lobe fre-

quency (corresponding to H in Figure 4(c)) of the 1stKPC spectrum, representing the

gait parameter of the step frequency for a participant, is then computed. Afterwards,

the sums of the powers within the main lobe between F and G in Figure 4(c) is calcu-

lated. The sums of the powers within the main lobe are denoted as EM, N, EM, OFF and

EM, ON for a non-PD control, a “Drug-Off” PD patient and a “Drug-On” PD patient,

respectively. The low- and high-frequency counterparts for a participant, denoted as

EL, N, EL, OFF and EL, ON and EH, N, EH, OFF and EH, ON, respectively, are also similarly

calculated.

Statistical analysis

The study was designed to identify the gaits and quantify the gait parameters of the

non-PD controls and the “Drug-On” (proper L-dopa treatment received one hour

later) and “Drug-Off” (at least 12 hours after the withdrawal of L-dopa) PD patients. A

paired t-test was used to examine the differences among non-PD controls, “Drug-Off”

and “Drug-On” PD patients. To examine whether the BMI and age make impacts on

recognizing the non-PD control and “Drug-Off” gaits, an analysis of covariance

(ANCOVA) test for measurements with covariates BMI and age was applied to evalu-

ate the differences in gait parameters between the two groups. A value of p less than

0.05 is considered to be statistically significant. A least significant differences LSD post

hoc test is performed.

Results
UPDRS part III subscores of the PD patients in the “Drug Off” and “Drug On” states

Five subscores–axial score (summation of UPDRS items 18, 22 with neck only, 27, 28,

29, and 30), limb akinesia (summation of items 23, 24, 25, and 26), limb rigidity (item

22 with neck excluded), limb tremor (summation of items 20 and 21), and part III

(summation of items 18 to 31)–are computed according to the UPDRS part III motor
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scores (Table 2) to describe the motor deviation of PD patients in different states

(Table 3). After the L-dopa treatment, the five subscores of all PD patients are

improved; 10 PD patients show an increase of less than 20 points on the Part III

scores.

Comparison of the efficiencies of the approaches

Classification accuracies using MDC based on the area feature, PCA-based and KPCA-

based features to identify different gaits are presented by confusion matrices in Table

4. In identifying the non-PD controls from the “Drug-Off” and “Drug-On” PD patients,

the separation capabilities of area, PCA-based and KPCA-based features are similar.

However, area feature is inadequate in identifying “Drug-On” PD patients. Only one of

them is classified correctly, whereas the others are mis-classified as non-PD controls or

“Drug-Off” PD patients. On the other hand, results from the KPCA-based feature

approach provide an average accuracy rate of 80.51%.

Kinematic gait parameters among the different groups

The KPCA-based method was used to extract the gait parameters from the sequential gait

video frames from the non-PD controls, “Drug-Off” PD patients and “Drug-Off” PD

patients. The average gait cycle times (s), stride lengths (cm), walking velocities (cm/s),

and cadences (steps/min) of these groups are presented in Table 5. Although the PD

patients showed improvements in all gait parameters after receiving medical treatment,

only stride length showed significant improvement. Compared to the “Drug-Off” PD

patients, the non-PD controls manifested better gait performance in terms of stride length

and walking velocity, but their performance was worse than the “Drug-On” PD patients

across all kinematic gait parameters. Moreover, the non-PD controls showed no significant

differences in the kinematic gait parameters compared to the “Drug-Off” and “Drug-On”

PD patients. ANCOVA measurements were used to analyze the interaction between fac-

tors (BMI and age) and groups (Non-PD and Drug-Off). We find found that there were

no significant differences in the interactions between the factors and groups.

We presents examples of the 1stKPC waveforms from the non-PD Controls, “Drug-

Off” PD patients and “Drug-On” PD patients in Figure 5. Interestingly, the 1stKPC

waveforms of the “Drug-On” PD patients were similar to those of the non-PD controls,

whereas the waveforms of the “Drug-Off” PD patients tended to be irregular.

Power spectrum of temporal gait signals

The gait frequency spectra of the PD patients in the “Drug-Off/On” states and the non-PD

controls are shown in Figure 6. The average step frequencies of the non-PD controls and

PD patients in the “Drug-On” and “Drug-Off” states are 1.661, 1.743 and 1.543 Hz, respec-

tively. The comparisons of the step frequency and spectrum power distributions among

the three groups are shown in Table 5. The results from a paired t-test indicate that

“Drug-On” PD patients show significant improvement in step frequency. Moreover, EM,

NON is significantly larger than EM, OFF, and EL, ON is significantly larger than EL, OFF.

Discussion
The accuracy of the KPCA-based gait recognition method

As the parkinsonian gait is commonly accompanied by not only slowness in walking and

shuffling steps, but also a reduction in hand swing and a stooped posture, thus,
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Table 2 UPDRS part III motor scores during the"Drug-Off” and"Drug-On” states.

Patient 1 2 3 4 5 6 7 8 9 10 11 12

Drug Off/On Off/On Off/On Off/On Off/On Off/On Off/On Off/On Off/On Off/On Off/On Off/On

18. speech 2/2 1/1 2/2 0/0 1/1 0/0 1/1 1/1 1/0 1/1 1/1 1/1

19. Facial expression 1/1 0/0 2/2 1/1 1/0 0/0 2/1 1/1 2/1 1/1 1/1 1/1

20. Tremor at rest

Face 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

Hand R, L 1,0/1,0 3,1/1,0 0,3/0,3 2,1/2,0 0,0/0,0 1,0/1,0 1,1/0,0 2,0/0,0 0,1/0,0 0,3/0,3 0,0/0,0 0,0/0,0

Feet R, L 1,2/0,0 1,0/0,0 2,0/1,1 1,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0 2,0/0,0 1,0/0,0 1,2/1,2 0,0/0,0 0,0/0,0

21. Action tremor R, L 0,0/0,0 2,1/1,0 0,0/0,0 1,1/0,0 0,0/0,0 1,0/1,0 1,1/1,1 1,1/0,0 2,2/0,0 0,3/0,2 0,0/0,0 0,0/0,0

22. Rigidity

Neck 2/1 2/2 2/2 2/2 0/0 0/0 2/1 2/1 2/0 1/0 1/1 2/2

UE R, L 2,1/1,0 3,2/2,1 2,3/1,2 2,2/2,1 1,2/0,2 3,2/2,1 3,2/2,1 1,2/0,1 1,2/0,0 0,2/0,1 1,3/0,2 2,2/2,2

LE R, L 2,1/1,1 2,2/2,1 3,3/2,3 2,3/1,2 0,1/0,1 1,0/0,0 2,2/1,1 2,2/0,1 3,2/2,1 0,1/0,0 1,2/1,2 2,1/2,1

23. Finger taps R, L 0,2/0,0 2,1/1,1 2,2/1,2 1,1/0,1 1,2/1,1 1,1/1,0 2,3/1,1 2,2/1,1 1,2/1,2 0,3/0,2 1,2/1,1 1,2/1,2

24. Hand grips R, L 0,1/0,0 2,1/1,1 1,2/1,2 2,1/1,1 0,1/0,1 1,1/1,1 2,2/1,1 2,1/1,1 2,2/1,2 0,2/0,2 1,3/1,2 1,1/1,1

25. RAMH R, L 0,2/0,2 3,1/1,0 2,3/1,3 2,2/2,2 1,2/0,0 1,0/1,0 2,2/1,1 2,2/2,2 1,2/1,1 0,3/0,2 1,3/1,3 1,2/1,1

26. Leg agility R, L 2,2/0,0 2,1/1,0 3,3/3,3 1,1/0,1 0,1/0,1 1,0/0,0 1,1/0,0 1,1/0,0 2,2/0,0 0,1/0,1 1,2/1,1 0,0/0,0

27. Arise from chair 3/0 2/1 2/1 1/0 0/0 1/0 1/0 1/1 1/0 0/0 1/1 0/0

28. Posture 1/1 1/1 1/1 1/1 1/1 1/1 3/2 2/2 1/1 0/0 1/1 0/0

29. Gait 1/0 1/1 2/2 1/0 1/0 1/0 1/1 2/1 2/0 1/1 1/1 0/0

30. Postural stability 2/2 0/0 1/1 2/2 1/1 1/1 2/1 2/2 2/1 1/1 1/1 0/0

31. Body bradykinesia 2/1 2/1 2/2 1/1 1/0 1/1 2/0 2/1 2/1 2/2 2/2 1/1

Part III: total 33/14 39/21 48/42 35/23 18/10 19/12 42/20 39/20 41/14 28/22 30/25 20/19

R: right; L: left; UE: upper extremity; LE: lower extremity; RAMH: rapid alternating movements of hands.
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information regarding upper extremities and trunk movements can be used in identify-

ing a PD patient [29]. The silhouette approach proposed in this study aims to develop a

parkinsonian gait recognition method. Two parkinsonian gait recognition algorithms,

the KPCA-based and PCA-based, as well as the area feature approaches, were tested for

their abilities to identify and classify the gait of “non-PD” controls and the PD patients

in different states. The area feature approach is worst at identifying the “Drug-On” PD

patients. Only one out of 12 PD patients in the “Drug-On” state is correctly identified

and classified; the rest are incorrectly identified as non-PD controls or “Drug-Off” PD

patients. The area feature approach calculates the area occupied by an object (in this

case, a participant) in an image frame (i.e., the number of pixels), which may be similar

under different conditions. Thus, the poor accurate rate of the area feature approach is

not surprising. The average accurate rate of the PCA-based feature approach is 69.44%,

which is better than the area feature method. Nonetheless, the average accuracy rate of

the KPCA-based feature approach is the highest at 80.51%. Such results are expected;

although PCA is appropriate in decomposing images with linear components, the spatio-

temporal characteristics associated with abnormalities in gait and upper extremity and

trunk movements contain nonlinear principal components.

Gait parameter analysis

Quantitative gait performance is an important reference for monitoring the progression

of Parkinson’s disease and the improvement brought about by scheduled treatments.

Our results show that PD patients who receive the L-dopa treatment show improve-

ment in their gait cycle time, stride length, walking velocity, cadence, and step fre-

quency. Such results are consistent with the findings in prior studies [31-33]. However,

the PD patients show significant improvements only in their stride length and step fre-

quency in the “Drug-On” state, whereas the improvements in gait cycle time, cadence,

and walking velocity are not significant.

Table 3 Definition of the five subscores

Subscores UPDRS part III motor items

Axial score 18, 22 (neck only), 27, 28, 29, 30

Limb akinesia 23, 24, 25, 26

Limb rigidity 22(without neck)

Limb Tremor 20, 21

Part III 18 - 31

Table 4 The confusion matrices use the area feature, PCA and KPCA approaches to
classify different gaits

Area feature PCA KPCA

Non-
PD

Drug-
Off

Drug-
On

Non-
PD

Drug-
Off

Drug-
On

Non-
PD

Drug-
Off

Drug-
On

Non-PD 9 0 3 10 1 1 10 0 2

Drug-Off 1 8 3 2 7 3 2 10 0

Drug-On 6 5 1 3 1 8 2 1 9

Predicted/actual 9/12 8/12 1/12 10/12 7/12 8/12 10/12 10/12 9/12

Accuracy 75% 66.67% 8.33% 83.33% 58.33% 66.67% 83.33% 83.33% 75%

Average
accuracy

50.16% 69.44% 80.51%

Chen et al. BioMedical Engineering OnLine 2011, 10:99
http://www.biomedical-engineering-online.com/content/10/1/99

Page 13 of 21



It has been reported that PD patients with advanced motor symptoms exhibit signifi-

cantly improved stride length and walking speed and slightly increased cadence after

the L-dopa treatment [33-36]. However, the results of the present study showed that

the L-dopa treatment slightly increased cadence but significantly improved only the

stride length. Due to the relatively small number of subjects and the absence of PD

patients with advanced motor symptoms, the improvement brought about by the L-

dopa treatment was not robust. Thus, the PD patients in the “Drug-On” state exhibited

few significant differences in gait parameters, although reductions in gait irregularity

and motor symptoms were observed.

Moreover, the differences in the gait parameters between the PD patients in the

“Drug-On” state and the “non-PD” controls were not significant. There are two possi-

ble explanations for this seemingly counterintuitive result. According to Table 2, 9 PD

patients scored less than 40 points on part III in the “Drug-Off” state, and the part III

scores of 11 PD patients improved to less than 25 points in the “Drug-On” state.

Table 5 Kinematic and spectral gait parameters (Mean ± SD).

Non-PD (n = 12) Drug-Off (n = 12) Drug-On (n = 12) BMI AGE

Gait cycle time (s) 1.21 ± 0.08 1.16 ± 0.15 1.15 ± 0.12 N.S N.S

Stride length (cm) 105.48 ± 6.95 85.54 ± 17.21 ξ105.94 ± 22.90 N.S N.S

Walking velocity (cm/s) 87.35 ± 8.45 76.35 ± 22.84 93.68 ± 23.35 N.S N.S

Cadence (steps/min) 99.33 ± 6.04 106.45 ± 15.09 105.88 ± 12.33 N.S N.S

Step frequency (Hz) 1.66 ± 0.11 1.48 ± 0.34 ξ1.74 ± 0.18 N.S N.S

EL (%) 9.55 ± 7.84 16.21 ± 9.60 ξ9.40 ± 4.56 N.S N.S

EM (%) *75.07 ± 9.36 63.89 ± 11.63 72.58 ± 8.63 N.S N.S

EH (%) 15.37 ± 3.10 19.88 ± 8.25 18.00 ± 6.31 N.S N.S

*, ξ are significant (p < 0.05) regarding the non-PD control and PD patients in the “Drug-Off” state and PD patients in
the “Drug-Off” and “Drug-On” states. EL, EM, and EH are the percent of energy distributed in the low-frequency band,
main-frequency band, and high-frequency band, respectively. Interactions between factors (BMI and AGE) and Groups
(Non-PD and Drug-Off) were assessed by ANCOVA. N.S is non-significant (p >0.05).

Figure 5 The representations of 1stKPC gait feature for non-PD control subjects and PD patients,
respectively. (a) The 1stKPC waveform of a selected non-PD control participant. (b) The 1stKPC waveform
of a selected PD patient in the “Drug-Off” state. (c) The 1stKPC waveform of the same PD patient in the
“Drug-On” state. The red circles and black squares represent the local maximums and minimums, which
reflect the occurrences of mid-swings and heel strikes, respectively.
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These results once again indicate that most of the PD patients in this study are in the

mild stages of the disease and present no significant deficits or deterioration in motor

functions; they move normally or with only a slight impairment after receiving L-dopa.

Although the non-PD controls recruited were healthy adults of nearly the same age as

the patients, when the ANCOVA model was applied with age as a covariate, the statis-

tical outcomes were identical to those in a model without including age. Given that

the healthy and patient groups had similar physical conditions, it is not surprising that

Figure 6 The gait frequency spectra of (a) PD patients in the “Drug-Off” state (red solid line) and
the “Drug-On” state and (b) the non-PD controls.
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there were no significant differences in gait performance between the two groups. The

non-PD controls and PD patients had similar BMIs, but the standard deviation in the

PD group was higher. Despite the heterogeneity in the BMIs, ANOCVA revealed that

the BMI did not affect the gait parameters in the present case.

As shown in Figure 5, the 1stKPC waveforms from walking cycles performed by a

“non-PD” controls and a PD patient during the “Drug On” state are similar. Although

this finding indicates that the gait patterns of “Drug-On” PD patients is similar to

those of healthy adults, a longer gait cycle time and the freezing of gait and slowness

in motion resulted from body bradykinesia can be identified from the irregular and

gentle parts presented in Figure 5(c). Due to the slow and asymmetry and unsTable

walking of the PD patients during the “Drug-Off” state, the 1stKPC waveforms appear

to be irregular and different from the non-PD control subject’s 1stKPC waveform. In

fact, the slowness in the walking cycle shifts the main frequency of the 1stKPC wave-

form toward a lower frequency band. Compared with the PD patients during the

“Drug-On” state, approximately 8% of the energy is shifted from the main frequency

(Drug On: 73.86%, Drug Off: 66.10%) to a lower frequency band (Drug On: 8.34%,

Drug Off: 16.95%) for the “Drug-Off” PD patients. The change in the power distribu-

tion causes the temporal 1stKPC waveform, resulting in a failure to form regular wave-

forms resembling those of non-PD controls. Such results show that the lack of

dopamine in the basal ganglia circuit in the brain may cause abnormalities and irregu-

larities in the gait profile.

The limitations of the proposed approach

There are some limitations of the present study. First, because only a digital camera

was used to capture the lateral view of the walking silhouettes, the proposed method

provides no information useful for examining the gait asymmetry that is known to be

an important factor for monitoring the progression of PD. An additional camera to

capture the frontal view and an algorithm to discriminate the left and right legs may

allow the proposed method to detect gait asymmetry. Second, the proposed method

lacks the ability to perform kinetic gait analysis. Kinetics permits computation of the

net forces or net moments of the force at each joint at every stage of the gait cycle.

This greatly helps researchers to determine the activity and contribution of individual

muscles. The use of electromyography and acceleration measurements in motions dur-

ing the gait cycle will provide kinetic gait analysis and will enhance the proposed

method.

Despite the mentioned shortcomings, the proposed KPCA-based feature approach

that shares identical requirements for computation, storage, and equipment with the

existing silhouette methods provides not only recognition of but also quantification of

parkinsonian gait to aid in clinical diagnoses and evaluation of the disease’s progres-

sion. In addition, the proposed approach provides the power spectrum of the partici-

pant’s gait as additional information to analyze the irregularity of the actions of PD

patients.

Conclusion
The ability to evaluate treatments for Parkinson’s disease is an important issue. How-

ever, previous research has been hindered due to the lack of a tool that can be easily
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installed, provide prompt gait analysis, facilitate data collection and gait analysis, and

lower a patient’s level of exertion during the examinations. In this study, a computer

vision-based gait analysis approach that is different from other sensor- or marker-

based approaches is developed. The proposed method uses kernel-based principal com-

ponent analysis; it only requires a digital camera and a decorated corridor to facilitate

the classification and quantification of specific gait patterns. Although there are few

significant differences among the gait patterns, the proposed method presents encoura-

ging classification accuracy rates of 80.51% in identifying different gaits. This technique

provides a practicable reference for clinicians and researchers with which to obtain the

quantitative gait parameters and assess the progression of Parkinson’s disease in the

motor section of the brain using ambulation patterns recorded in monocular image

frames.

Appendix 1
Comparing the KPCA-based feature approach with the GAITRite® method for validation

To evaluate the validity of the proposed KPCA-based method in quantifying gait per-

formance to aid clinical diagnoses and further applications, the quantitative gait para-

meters from the proposed approach were compared with the outcomes of the

GAITRite® system (CIR Systems Inc., Clifton, NJ, U.S.A) prior to the actual

experiment.

The GAITRite® system is an instrumented walkway system that has been validated

as a reliable tool for the measurement of kinematic gait parameters [37]. Six healthy

male volunteers with an average age of 54 years (max = 76.5 years, min = 46 years, S.

D. = 9.7 years) were recruited, and they provided informed consent for participation.

Using an identical experimental setup to that employed in the present study, these

volunteers were asked to perform four walking trials at their natural pace, and a total

of 24 trials were collected.

The equipment setup used to perform the concurrent gait analysis by the GAITRite®-

and KPCA-based methods are shown in Figure 7. Gait analysis was performed using an

electrical spatial and temporal analysis system (GAITRite® system). The GAITRite® sys-

tem is a 4.6-m-long electronic walkway that connects to the serial port (19,200 baud

rate) of a windows XP computer. The walkway is 1/8 inch thick and contains 16,128

sensors sandwiched between a thin vinyl cover on top and a rubber bottom. The active

senor area is 0.61 m wide by 3.66 m long. GAITRite® software (ver. 3.8) was used to pro-

cess the footstep data and to provide quantified temporal and spatial parameters.

The Panasonic video camera (model PV-GS400, Japan) used to videotape the walking

trials was mounted on a tripod and positioned midway between the start and finish

lines of the walkway, with the camera’s field of view perpendicular to the long axis of

the walkway. All trials were videotaped using a sampling rate of 15 image frames per

second and an image size of 320 × 240 pixels. The plane of the camera’s shutter was

located 4.1 m from the centerline of the walkway. The size of the field of view ensured

that two pairs of infrared sensors, which were aligned with the start and finish lines,

could be seen in the camera’s viewfinder. One graphical programming utility was

developed using the NI LabVIEW environment (LabVIEW 8.5, National Instruments,

Austin, TX, U.S.A) and a 1394 video capture card (Model PXI-8252, National Instru-

ments, Austin, TX, U.S.A) to synchronize the motion detection and gait video capture.
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In a preliminary experiment, the participant stood at the initiating line with his toes

just behind the line. The participant was asked to walk through a 6-m corridor deco-

rated with a navy curtain, and the 3-m GAITRite® walkway for steady-state gait was

defined by two pairs of infrared sensors that were aligned with the start and finish

lines. When the infrared beam was broken by the participant’s advancing lower leg, the

infrared reflector transmitted a TTL logic signal to the LabVIEW utility on the PC side

Figure 7 Equipment setup used to measure gait parameters with the GAITRite® mat and its
recording system, and the KPCA-based method.

Figure 8 Sequential gait image frames from a healthy subject walking on the GAITRite® walkway
system. (a) Sequential gait image frames from a healthy subject walking on the GAITRite walkway system.
The top panels are the original sequential walking image frames containing 240 × 320 pixels. The bottom
panels are the trimmed 64 × 64 pixel binary silhouettes of the top image frames. (b) The 1stKPC waveform
of a selected non-PD control volunteer participating in the preliminary experiment. The green dots indicate
the magnitudes of the sequential 1stKPCs.
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via a serial RS232 port, providing timestamps to determine the timing of the closest

playback frame at the start and end of each walking trial.

The GAITRite® system and the video camera simultaneously collected footstep data

during the steady-state walking period. The gait sequence image frame and the 1stKPC

waveform of a healthy subject are shown in Figure 8(a) and 8(b), respectively.

Results from the KPCA-based method were acquired using processing procedures

identical to those used in the actual experiment. A paired Student’s t-test was con-

ducted to examine the differences between the gait parameters (gait cycle time, stride

length, walking velocity and cadence) measured by the GAITRite® system and the

KPCA-based method. According to Table 6, there were no significant differences (p-

value > 0.05) in the gait cycle time, stride length, walking velocity, or cadence detected

using these two methods, indicating that the KPCA-based method and the GAITRite®

system yielded comparative gait measurements. This finding was expected because the

results of the two methods were also correlated with respect to the spatial measures

recorded concurrently during the subject’s walking trials. We are hence convinced of

the validity of the KPCA-based method for acquiring adult gait cycle time, stride

length, walking velocity, and cadence.
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